Lex & Yacc

by
H. Altay Glvenir

A compiler or an interpreter performs its task in 3 stages:

1) Lexical Analysis:

Lexical analyzer: scans the input stream and converts sequences of
characters into tokens.

Token: a classification of groups of characters.

Examples: Lexeme Token
Sum ID
for FOR
= ASSIGN OP
== EQUAL OP
57 INTEGER CONST
“Abcd” STRING CONST
* MULT OP
, COMMA
: SEMICOLUMN
(LEFT PAREN

Lex is a tool for writing lexical analyzers.

2) Syntactic Analysis (Parsing):

Parser: reads tokens and assembles them into language constructs using
the grammar rules of the language.

Yacc (Yet Another Compiler Compiler) is a tool for constructing parsers.

3) Actions:
Acting upon input is done by code supplied by the compiler writer.

Lex & Yacc 2
Basic model of parsing for interpreters and compilers:

input Lexical | streamof | b, cor parse | Actions | output

stream analyzer | tokens tree executable

Lex: reads a specification file containing regular expressions and generates
a C routine that performs lexical analysis.

Matches sequences that identify tokens.

Yacc: reads a specification file that codifies the grammar of a language and
generates a parsing routine.

Using lex and yacc tools:

*. 1 [Lex specification] [Yacc specification] * Ly
lex yacc
*.cC

) Custom C ’
lex.yy.cC yylex () routines yyparse() |y.tab.c

| — 1

gcc gcc ~—[libraries]

gcc -0 scanner lex.yy.cC gcc -o parser y.tab.c

A A

scanner parser

Lex & Yacc

Lex

Reqular Expressions in lex:

a

\t
\\
[\t]
["a-d]

Examples:

matches a

matches abc

matches a, b or ¢

matches a, b, ¢, d, e, Or £

matches any digit

matches one or more of X

matches zero or more of X

matches any natural number

grouping an expression into a single unit
alternation (or)

IS equivalentto [a-c]*

X is optional (O or 1 occurrence)

matches if or ifdef (equivalentto if|ifdef)
matches any alphabetical character

matches any character except newline character
matches the dot character

matches the newline character

matches the tab character

matches the \ character

matches either a space or tab character
matches any character other than a,b,c and d

Real numbers, e.g., 0, 27, 2.10, .17
[0-9]+] [0-9]1+\.[0-9]1+|\.[0-9]+
[0-91+ (\.[0-9]+)2|\.[0-9]+
[0-9]1*(\.)2[0-9]+

To include an optional preceding sign:

[+-12[0-9]*(\.)?2[0-9]+

Lex & Yacc 4

Contents of a lex specification file:
definitions

o0
©°70o

regular expressions and associated actions (rules)

o0
70

user routines

Example ($ is the unix prompt):
Semacs ex1.1
Sls
exl.1l
Scat exl.1
Zoption main
funny printf ("I recognized FUNNY") ;
Slex exl.1
Sls
exl.l lex.yy.cC
Sgcc -0 exl lex.yy.c

Sls

exl exl.l lex.yy.c
Semacs test

Scat test

fun

funny

ali is funny
and the course is fun

Scat test | ./exl or $./exl < test
fun

I recognized FUNNY

Ali is I recognized FUNNY

this course is fun

During pattern matching, lex searches the set of patterns for the single longest
possible match.
Scat ex2.1
Zoption main
fun printf ("FUN") ;
funny printf ("FUNNY");

Lex & Yacc 5

Scat test | ex2
FUN

FUNNY

Ali is FUNNY

this course is FUN

Lex declares an external variable called yytext which contains the matched
string
Scat ex3.1
option main
tom|jerry printf (">%s<", yytext);
Scat test3
Did tom chase jerry?
Scat test3 | ex3
Did >tom< chase >jerry<?

Definitions:

/* float0.1 */
soption main

%

+=12[0=-9]*(\.)?2[0-9]+ printf ("FLOAT") ;

input: ab7.3c--5.4.3+d++5-
output: abFLOATc-FLOATFLOAT+d+FLOAT-

The same lex specification can be written as:

/* floatl.l */
soption main
digit [0-9]

%

o\°

+=1?2{digit}* (\.)?{digit}+ printf ("FLOAT") ;

Local variables can be defined:

/* float2.1 */

soption main

digit [0-9]

sign [+-]

{sign}?{digit}*(\.)?{digit}+ { float val;
sscanf (yytext, "$f", &val);
printf (">%f<", val);

Lex & Yacc 6

Input Output

ali-"7.8veli ali>-7.800000<veli
ali--07.8veli ali—->-7.800000<veli
+3.7.5 >3.700000<>0.500000<

Other examples

/* echo-upcase-wrods.l */
soption main

[A-Z]+[\t\n\.\,] printf("%s",yytext);
; /* no action specified */

The scanner with the specification above echoes all strings of capital letters,
followed by a space, tab (\t), newline (\n), dot (\ .), or comma (\,) to stdout,
and all other characters will be ignored.

Input . Qutput
Ali VELI A7, X. 12 VELI ~ X.
HAMI BEY a HAMI BEY

Definitions can be used in definitions

/* def-in-def.l */

Foption main

alphabetic [A-Za-z $]

digit [0-9]

alphanumeric ({alphabetic} | {digit})

{alphabetic} {alphanumeric}* printf ("Java identifier");
\ printf ("Comma") ;

(
’ (
\ { printf ("Left brace");
\= printf ("Assignment op");
\=\= printf ("Equality op");

Among all of the rules that match the same number of characters, the rule given
first in the file will be chosen.

Example,

/* rule-order.l */
Foption main

o\°
o\°

for printf ("FOR") ;
[a-z]+ printf ("IDENTIFIER");

Lex & Yacc 7

for input
for count = 1 to 10

the output would be
FOR IDENTIFIER = 1 IDENTIFIER 10

However, if we swap the two lines in the specification file:
soption main

o\°

[a-z]+ printf ("IDENTIFIER");
for printf ("FOR") ;

for the same input

the output would be
IDENTIFIER IDENTIFIER = 1 IDENTIFIER 10

Note that we get a warning from lex, about this problem!

Important Lex Rules:

1) At any point in the input stream, the rule that matches the longest string
Is used.

2) If two or more rules march the same input string, the one given the
earliest in the specification file is used

Important note:

Do not leave extra spaces and/or empty lines at the end of a lex specification
file.

Lex & Yacc

Yacc
Yacc specification describes a CFG, that can be used to generate a parser.
Elements of a CFG:

1. Terminals: tokens and literal characters,

2. Variables (nonterminals): syntactical elements,
3. Production rules, and

4, Start rule.

Format of a production rule:

symbol: definition
{action}
Example:
<a> ::= c InBNF is written as
a: b 'c'; in yacc

Format of a yacc specification file:
declarations

[eXe)
0

grammar rules and associated actions

[eXe)
0

C programs

Declarations: To define tokens and their characteristics

Stoken: declare names of tokens

$left: define left-associative operators

$right: define right-associative operators

$nonassoc: define operators that may not associate with themselves
Stype: declare the type of variables

Sunion: declare multiple data types for semantic values

$start: declare the start symbol (default is the first variable in rules)
Sprec: assign precedence to a rule

5 {
C declarations directly copied to the resulting C program
(E.g., variables, types, macros...)

o\°
—

Lex & Yacc

Example: A yacc specification to accept L = {a"b" | n>0}.

/* anbn0.1 */

%% Function yywrap() is
a return (4); called by lex when input
b return (B); is exhausted.

- return (%’yt?Xt [01) Return 1 if you are done
\n return ('\n'); , .
oo or O if more processing
int yywrap() { return 1; } IS required.

/*anbn0.y */

$token A B

anbn: s '"\n' {return 0;}

S: A B

| A s B

’

o\°
o\

#include "lex.yy.c"
int main() {
return yyparse() ;

}

int yyerror(char *s) { fprintf (stderr, "%s\n", s); }

If the input stream cannot be derived from the start variable, the default
message of "syntax error"is printed and program terminates.

However, customized error messages can be generated.

/*anbnl.y */
stoken A B
anbn: s "\n' { printf(" is in anbn\n");
return 0;}
S A B
| A s B

#include "lex.yy.c"
void yyerror (char *s) { printf("%s, it is not in anbn\n", s); }
int main() {

return yyparse();

}

Lex & Yacc

10

$./anbn
aabb
is in anbn
S./anbn
acadbefbg
Syntax error, it is not in anbn

$
A grammar to accept L ={a"b" | n > 0}.

/*anbn 0.y */
stoken A B

o\°
o\°

[eXe)
0

#include "lex.yy.c"

int main() {
return yyparse() ;

}

anbn: s '\n' { printf(" is in anbn 0\n");
return 0;}
S: empty
| A s B
empty: ;

void yyerror (char *s){ printf ("%s, it is not in anbn_O\n", s); }

Positional assignment of values for items.

$$: left-hand side
$1: first item in the right-hand side
$n: nth item in the right-hand side

Example: Simple adder

/* add.l */

digit [0-9]

{digit}+ {sscanf (yytext, "%d", &yylval);
return (INT) ;
}

\+ return (PLUS) ;

\n return (NL) ;

.
4

o\°
o°

int yywrap() { return 1; }

Lex & Yacc 11

/* add.y */
/* L = {INT PLUS INT NL} */
%token INT PLUS NL

o
o°

add: INT PLUS INT NL { printf(" = %d\n", $1 + $3);}
#include "lex.yy.c"
void yyerror (char *s) { printf ("$s\n", s); }
int main() {
return yyparse();

}

$./add

003 + 05

= 8

1+2

syntax error

Example: printing integers in a loop

/* print-int.1 */

0-9]+ {sscanf (yytext, "sd", &yylval);
return (INTEGER) ;

}
\n return (NEWLINE) ;

return (yytext[0]) ;

%

00
o\©

int yywrap() { return 1; }

/* print-int.y */
$token INTEGER NEWLINE

00
o\©

lines: /* empty */
| lines NEWLINE
| lines value NEWLINE {printf (" =%d\n", $2);}
| error NEWLINE {yyerror ("! Reenter: "); yyerrok;}

value: INTEGER {$$ = $1;}

4

o\°
o°

#include "lex.yy.c"
void yyerror (char *s) { printf ("$s", s); }
int main() {

return yyparse () ;

}

error is a token provided by yacc. The macro yyerrok says, “the old error is
finished.”

Lex & Yacc

Execution:
$./print-int

funny

syntax error! Reenter: 0007
=7

D

Keeping track of line numbers in the source:
/* print-int-wln.l */
/* printing integers with line numbers */

0-9]1+ { sscanf (yytext, "sd", &yylval);
return (INTEGER) ;

\n { extern int lineno; lineno++;
return (NEWLINE) ;

}
return (yytext [0]) ;

o\°
o°

int yywrap() { return 1; }

/* print-int-wln.y */
/* prints integers with line numbers */
stoken INTEGER NEWLINE

o\°
o\°

lines: /* empty */
| lines NEWLINE
| lines line NEWLINE {printf ("%d) %d\n", lineno, $2);}
| error NEWLINE { printf (" in line %d!\nReenter: ", lineno);
yyerrok;
}
line: INTEGER {$$ = $1;}
#include "lex.yy.c"
int lineno=0;
void yyerror (char *s) { printf ("%s", s); }
int main() {
return yyparse () ;

}

Lex & Yacc 13

Execution:
$./print-int-wln
007
1) 7
jhg
syntax error in line 2!
Reenter: 66
3) 66

Although right-recursive rules can be used in yacc, left-recursive rules are
preferred, and, in general, generate more efficient parsers.

The type of yylval is int by default. To change the type of yylval use
macro YYSTYPE in the declarations section of a yacc specifications file.
5 {
#define YYSTYPE double

5}

If there are more than one data types for token values,
yylval is declared as a union.

Example with three possible types for yylval:

Funion{
double real; /* real value */
int integer; /* integer value */
char str[30]; /* string value */
}
Example:

yytext = “0012”, typeofyylval: int,valueofyylval.integer: 12
yytext = “+1.70”, typeofyylval: double,valueofyylval.real: 1.7

The type of associated values of tokens can be specified by $token as
stoken <real> REAL
$token <integer> INTEGER
$token <str> IDENTIFIER STRING

Values associated with tokens, yylval

' '
Input Lexmi!anMyzer Tokens Parser main () {
stream yylex() literal yyparse ()
! strinas yyparse ()
Unmatched -

1

0: input is valid

strings to stdout 1: input is invalid

Lex & Yacc

To return values, associated with tokens, from a lexical analyzer:

/* types.l */

alphabetic [A-Za-z]

digit [0-9]

alphanumeric ({alphabetic}|{digit})

[+-12{digit}* (\.) ?{digit}+ {sscanf (yytext, "$1f", &yylval.real);
return REAL;
}

{alphabetic} {alphanumeric}* {strcpy (yylval.str, yytext);

return IDENTIFTER;

}
\<\- return ASSIGNOP;

\n return NL;

3o}
©°0

int yywrap() { return 1; }

Type of variables can be defined by $type as
stype <real> real-expr
stype <integer> integer-expr

/* types.y */

Funion{
double real; /* real value */
int integer; /* integer value */
char str[30]; /* string value */

}
$token <real> REAL

%token <str> IDENTIFIER
%token ASSIGNOP NL
type <real> assignment stmt

o°

00
o\©

assignment stmt: IDENTIFIER ASSIGNOP REAL NL {
$S = $3;
printf ("$s is assigned to %g\n", $1, $S);
}

00
o\©

#include "lex.yy.c"
void yyerror (char *s) { printf("$s, it is not an assignment!\n", s); }
int main() {

return yyparse () ;

}

[guvenir@dijkstra types]$./types
total <~ -01.57

total is assigned to -1.57

“D

Example: yacc specification of a calculator is given the web page of the course.
(http://www.cs.bilkent.edu.tr/~guvenir/courses/CS315/lex-yacc/calculator/)

http://www.cs.bilkent.edu.tr/~guvenir/courses/CS315/lex-yacc/calculator/

Lex & Yacc

Actions between rule elements:

/* actions.l */
a return A;

b return B;

\n return NL;

.
4

o0 .
o°

int yywrap() { return 1; }

/* actions.y */

51

#include <stdio.h>
5}

$token A B NL

0\°
o\

s: {printf("1");}
a
{printf ("2");}
b
{printf ("3");}
NL

{return 0;}

a: {printf("4");}
A
{printf ("5");}
b: {printf("e");}
B
{printf ("7") ; }

4

00
o\©

#include "lex.yy.c"
int yyerror (char *s) {
printf ("%s\n", s);

}

int main (void) { yyparse(); }

actions: 14ab
52673
actions l4aa
526syntax error
actions 14ba
syntax error
actions l4xyzafghbnm
52673

Lex & Yacc 16

Conflicts

Pointer model: A pointer moves (right) on the RHS of a rule while input tokens
and variables are processed.

Stoken A B C

o\°
o\°

start: A B C ; /* after reading A: start:.ﬁ B C */

1

When all elements on the right-hand side are processed (the pointer reaches
the end of a rule), the rule is reduced.

If a rule reduces, the pointer then returns to the rule where it was called.

Conflict: There is a conflict if a rule is reduced when there is more than one
pointer. yacc looks one-token-ahead to see if the number of pointers
reduces to one before declaring a conflict.

Example:

$token ABCDE F
start: x | y;

X: A_BfC D;

y: A B,E F;

After tokens A and B, either one of the tokens, or both will disappear. For
example, if the next token is E, the first, if the next token is C the second token
will disappear. If the next token is anything other than C or E both pointers will
disappear. Therefore, there is no conflict.

The other way for pointers to disappear is to merge in a common subrule.

Example:

$token ABC D E F
start: x | y;
X: A_sz D E;
y: AB,z DE;

f
z: C;

Initially, there are two pointers, one in x, the other in y rules. After reading
tokens A, and B, these two pointers shift. Then, these two pointers merge in
the z rule. The state after reading token C is shown below.

Lex & Yacc 17

$token A BCDEF

o\°
o\°

start: x | vy ;
x: ABzDE;
y: ABzDF;
z: Cy;

However, after reading A B C, the z rule reduces. There is only one pointer
when z reduces. Then, this pointer splits again into two pointers in x and y
rules.

$token A BCDEF

z: C; No conflicts

Conflict example:

Stoken A B

o\°
o\°

start: x B | y B ;
x: At; reduce
y: By; reduce reduce/reduce conflict on B.

After A, there are two pointers. Both rules (x and y) want to reduce at the
same time. If the next token is B, there will be still two pointers. Such
conflicts are called reduce/reduce conflict.

Note that yacc looks one-token-ahead before declaring any conflict.

$token A B C D E

o\°
o\°

start: AxCD | Ay CE;
X: B¢;
y: B reduce/reduce conflict on C.

The pointers in x and y rules will reduce on C, resulting in reduced/reduce
conflict on ¢, although the grammar is not ambiguous. If yacc has looked two
tokens ahead, it would have realized that only one pointer would remain on
tokens D or E, and no pointer otherwise, so it would not declare any conflict.

Lex & Yacc 18

Another type of conflict occurs when one rule reduces while the other shifts.
Such conflicts are called shift/reduce conflicts.

Example:

stoken A R

start: x | y R;

x: AR ; shift

y: Ay reduce shift/reduce conflict on R
I

After A, y rule reduces, x rule shifts. The next token for both cases is R.

Example:

stoken A

start: x | y;

x: A;t reduce

v: At reduce reduce/reduce conflict on Send.

At the end of each string there is a $Send token. Therefore, yacc declares
reduce/reduce conflict on send for the grammar above.

Debugging:

Syacc -v filename.y

produces a file named y . output for debugging purposes.

Example:

Stoken A P

o\°
o\°

| v P;
P; /* shifts on P */
; /* reduces on P */

L.<l.'><U)
> X

Lex & Yacc

19

The y.output file for the

grammar above is shown below:

0 Saccept : s $end

/ S

x is called rule number 1

1 s X
2 Iy
3 x : AP
4y Each state corresponds to a unique
combination of possible pointers in
state 0 the yacc specifications file.
Saccept : . s $end
A shift 1 In state O, if the lookahead token is A, then push the current
state (0) onto the stack, shift the pointer, goto state 1.
. error
—error
Otherwise, call yyerror()
s gote—=—F8
When s rule is reduced goto state 2
X goto 3
oto 4 | Reduce rule 4 |
v 9 Shift and goto state 5
- Shift/reduce conflict on P
1: shift/reduce conflict (shift 5, reduce 4) on P
state 1
X (3 One pointer is in rule 3 between tokens A and P
4 : .
Y () The other pointer is in rule (4) after token A
P shift 5 If the next token is P, the system will choose to shift and goto
state 5.
state 2 . .
____—| State2: input matched the start variable s,
Saccept : s . Send (0) if this is the end of string, accept it.
Send accept
state 3 / State 3: rule (1) s: x is to reduce on any text token
S @ X . (1)
/ Any character or token
.~ reduce 1
__— | State 4: pointeris in rule 2. After y rule is processed
state 4

sy If the look-ahead token is P, shift the pointer, go to state 6
PM If the look-ahead token is anything else, call yyerror()

Lex & Yacc 20

state 5 / State 5: Token A and then Token P are seen.

x : AP . (3)
_——— | Reduce rule (3) without consulting the look-ahead token
reduce 3
state 6
s :yP . (2 Reduce rule (2) without consulting the look-ahead token
reduce 2

Rules never reduced:
y A (4)

State 1 contains 1 shift/reduce conflict.

/ {$end, A, P, }/ {$accept, s, X, y}

4 terminals, 4 nonterminals

5 grammar rules, 7 states

Recursive Rules:

Consider the following grammar:

/* recursive.y */

$token A
s: A // L ={A, AAA, AAAAA, ..}, Not ambiguous !
| A s A
y.output file:
0 Saccept : s $end
1 s A
2 | A s A
~L
state 0O
Saccept : . s $end (0)
A shift 1
error
s goto 2 if the state machine pops back to this state,

the lookahead symbol is s, the parser will go to state 2

1: shift/reduce conflict (shift 1, reduce 1) on A

state 1
: A . (1) reduce rule (1)
: A . s A (2) shift in rule (2)
A shift 1 if A, shift to state 1, that is, stay in the same state
Send reduce 1 1f Send, reduce rule 1

s goto 3

Lex & Yacc 21

However, the same language can also be represented by the following
grammar, which does not have any conflict.

/* recursive.y */
$token A

o°
o°

0

: A // L ={A, AAA, AAAAA, ..}, Not ambiguous !
| s A A

Actions on a Rule:
Actions can appear anywhere in the RHS of a rule.

However, for technical reasons, it is convenient for yacc to transform the
grammar so that actions always appear at the very end.

For this reason, yacc introduces new variables, called marker variables (non-
terminals), so that all actions are at the end of the rules.

Example,

Rule
a: {actionl} b {action2} c {action3};

is replaced by
a: $s1 b $S2 ¢ [action3};

$S1: {actionl); // Empty rules
$$2: {action2};

Example:
stoken A B NL

[}
°70°

start: x | y;

x: A ANL ;
y: A BNL ;
Internally:

0 Saccept : start Send
1 start : x

2 Y%
3 x : AANL
4 y : ABNL

No Conflict.

Lex & Yacc 22

However, the equivalent following grammar
%token A B NL

start: x | y;

x: {printf ("using x");} A A NL ;

y: {printf ("using y");} A B NL ;

Converted into:
0 Saccept : start $end
1 start : x
|y
$S1 ¢
X : $S1 A A NL
$$2
y : $$2 A B NL

oY U Wb W N

Conflict:

reduce/reduce conflict (reduce 3, reduce 5) on A

Make utility

Using the make utility on linux systems:
Contents of the file named Makefile:

parser: lex.yy.c y.tab.c

gcc -o parser y.tab.c
y.tab.c: parser.y

yacc parser.y
lex.yy.c: scanner.l

lex scanner.l

On the command prompt, just type
make
It automatically determines which source files (in this example, y.tab.c,
parser.y, lex.yy.c, scanner.l) of a program (parser in this

example) need to be recompiled and/or linked.

Bibliography

Saumya Debray “A Quick Introduction to Handling Conflicts in Yacc Parsers”
https://www?2.cs.arizona.edu/~debray/Teaching/CSc453/DOCS/conflicts.pdf

Tom Niemann, “LEX & YACC TUTORIAL”,
https://www.epaperpress.com/lexandyacc/

https://www2.cs.arizona.edu/~debray/Teaching/CSc453/DOCS/conflicts.pdf
https://www.epaperpress.com/lexandyacc/

